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ABSTRACT 

Aeolian vibration is a significant factor contributing to the 

fatigue failure of power transmission lines. The mitigation of 

such vibrations in power lines has traditionally been achieved 
using Stockbridge dampers along the line spans, which are 

modeled as fixed vibration absorbers.  They largely depend on 

their resonant frequencies and placement on the cable. 

Therefore, given the stochastic nature of the wind, recent studies 

have explored the concept of dynamic/moving absorbers. 

Although the effectiveness of the moving absorber has been 

demonstrated in the literature to be superior to that of the fixed 

absorber, analyses have primarily been limited to linear cases 

and have not accounted for nonlinearity introduced by the 

moving absorber or the wind inflow on the powerline.  Aiming to 

fill this gap, this work combines the nonlinearities from the 
fluctuating lift force modeled as a van der Pol oscillator, with a  

nonlinear moving absorber into a single model to investigate the 

effect of a nonlinear mobile damper relative to its linear 

counterpart. We observe that the system with a nonlinear moving 

absorber exhibits smaller amplitude oscillations when compared 

to its linear counterpart.  This finding underscores the superior 

mitigation characteristics of nonlinear vibration absorbers and 

suggests the potential for designing an optimal nonlinear moving 

vibration absorber. 
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Nonlinear absorber ⋅ Powerline ⋅ van der Pol Oscillator 

1. INTRODUCTION

In the field of structural engineering, the intricate interaction 

between man-made infrastructure and external environmental 

forces introduces significant challenges. Among these, wind-

induced and Aeolian vibrations present a persistent threat to the 

integrity of high-tension power transmission lines. Aeolian 

vibrations, characterized by small-amplitude, flexural 
oscillations in the crosswind direction, typically occur under 

light to moderate wind speeds [1]. Although these oscillations 

might seem to be minor amplitude, often less than the diameter 

of the conductor, their cumulative effect over time can lead to 

structural fatigue and the potential for catastrophic cable failure 

[2]. Consequently, understanding the dynamics of cable during 

Aeolian vibration is crucial for developing effective mitigation 

strategies. 

The suppression of fatigue failure in power lines has 

traditionally been achieved through the use of Stockbridge 

dampers along the line spans [3-6]. However, studies indicate 
that the efficacy of Stockbridge dampers largely depends on their 

resonant frequencies and placement on the cable [7-9]. These 

dampers are usually positioned at the cable ends, where variable 

wind patterns may reduce their effectiveness. Specifically, fixed 

damper placements may coincide with nodal points within the 

frequency spectrum, significantly reducing their mitigation 

efficiency [8]. Thus, researchers have been investigating the use 

of dynamic/moving dampers for enhanced control. Notably, 

Bukhari et al. [4] introduced a concept of moving damper for 

power lines, while Kakou et al. [6] explored a PID-based control 

mechanism implemented on a mobile robot for both vibration 

suppression and line inspection.  Their findings suggest that 
moving absorbers are more effective than fixed absorbers. 

However, these studies have yet to consider the impact of 

nonlinearity in the structure and the fluid-structure interaction, 

marking an essential direction for future research. 
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Due to the nonstationary and stochastic nature of wind, 

nonlinear dampers have been recognized as an optimal solution 

for vibration mitigation [10-14]. Their effectiveness is attributed 

to their ability to cover a broad frequency band for vibration 

attenuation [10,12] and their high level of robustness against 
unpredictable environmental conditions [13]. For instance, 

Samani and Pellicano [15] explored the dynamics of a beam 

under a moving load, comparing linear and nonlinear 

(specifically, cubic nonlinear) absorbers. They revealed that 

dampers with cubic nonlinear characteristics significantly 

reduced the maximum amplitude of vibrations.  More recently, 

Zhang et al. [16] examined the performance of a nonlinear 

energy sink (NES) with cubic nonlinear damping. They found 

such an NES could outperform linear damping NES systems in 

reducing vibrations within nonlinear systems. It's critical to 

recognize that nonlinearity in these contexts can emerge from a 

variety of sources, including materials and environmental 
conditions, beyond just the absorbers themselves. 

Aeolian vibrations are a type of resonance response most 

observed in slender, flexible structures, such as overhead power 

lines, when subjected to wind forces. These vibrations result 

from the shedding of vortices, known as the von Kármán vortex 

street, forming in the wake of the structure. The unsteady 

aerodynamic forces generated by this vortex shedding can 

resonate with structure, leading to Aeolian vibrations. Although 

Aeolian vibrations share characteristics with Vortex-Induced 

Vibrations (VIV) [17], they are distinct in their manifestation, 

typically occurring in air and involving higher frequencies and 
lower amplitude. For moving bodies, such as cylinders and 

sheets undergoing stretching, the simple sinusoidal force 

approximation used in basic fluid-structure interaction (FSI) 

models is often inadequate [18-20] due to the complex nature of 

the interaction involved.  Consequently, more sophisticated 

models, like the coupled wake-oscillator models, have been 

developed to represent these phenomena more accurately. These 

models, which incorporate self-sustained oscillations through 

mechanisms such as negative damping, provide a closer 

approximation of the complex dynamics involved in VIV and 

Aeolian vibrations. Empirical validations of these models have 

demonstrated good agreement with experimental observations, 
establishing them as valuable tools for understanding and 

predicting the behavior of structures subjected to VIV [20,21]. 

In a review of existing literature, studies such as [4,6] have 

demonstrated the superior performance of moving absorbers 

over fixed absorbers in mitigating vibrations. However, these 

studies have not fully addressed the complexities introduced by 

nonlinearities, both from the absorber and wind forces. Given the 

critical role of nonlinear dynamics in the optimal design of 

vibration absorbers, especially under the conditions of high 

amplitude oscillations, this work introduces a novel approach. 

We examine a system in which a cable, modeled as an Euler-
Bernoulli beam for its flexibility and bending characteristics, is 

integrated with a nonlinear moving absorber. The system is 

further coupled with a nonlinear lift force model, enhancing our 

understanding of its interactions with aerodynamic forces. The 

design of the moving damper system consists of a moving mass, 

a nonlinear spring, and a nonlinear damper, in addition to another 

mass, to effectively simulate the dynamic behavior of the 

absorber. The forces acting on the cable include pretension and 

the vortex-induced lift force, which are modeled using the van 
der Pol oscillator.  This approach enables a more comprehensive 

exploration of the nonlinear cable’s response to nonlinear 

aerodynamic excitations. 

The rest of the paper is organized as follows. In Section 2, 

we briefly present the mathematical model for the beam-moving 

absorber system coupled with the van der Pol oscillator. The 

validation of the model and its difference from the sinusoidal 

force model will be shown in Section 3, followed by the 

effectiveness of the nonlinear moving absorber in vibration 

suppression, detailed in Section 4. Finally, some conclusions are 

drawn in Section 5. 

 

FIGURE 1:  CONCEPTUAL DESIGN OF THE MOBILE 

DAMPER ATTACHED TO A POWER LINE CABLE [6] 

 

 

FIGURE 2:  SCHEMATIC OF A SIMPLY SUPPORTED BEAM 
WITH A MOVING MASS-NONLINEAR SPRING-NONLINEAR 

DAMPER-MASS ABSORBER 

2. MATHEMATICAL MODELING 

The proposed conceptual design and the corresponding 

schematic of the moving vibration absorber are shown in Fig. 1 
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and 2, respectively. The system consists of a conductor with 

length 𝐿, a flexural rigidity of 𝐸𝐼, and a mass per unit length 𝑚. 

Moreover, the Stockbridge damper consists of a clamped mass 

𝑚𝑐 and a suspended mass 𝑚𝑎. The damper has an equivalent 

linear/nonlinear stiffness (𝑘, 𝑘𝑛𝑙) and an equivalent 

linear/nonlinear damping coefficient (𝑐, 𝑐𝑛𝑙). Accordingly, the 

position vectors for the beam 𝑟𝑏, in span mass 𝑟𝑐, and the 

suspended mass 𝑟𝑎 are given as 

𝑟𝑏 = 𝑥𝒊 + 𝑦(𝑥, 𝑡)𝒋, 

(1) 𝑟𝑐 = 𝑥𝑐(𝑡)𝒊 + 𝑦(𝑥𝑐 , 𝑡)𝒋, 

𝑟𝑎 = 𝑥𝑐(𝑡)𝒊 + 𝑣(𝑡)𝒋, 

where 𝑥𝑐 is the position of the absorber from the origin and 𝑣 is 

the displacement of the absorber. Utilizing these position 

vectors, the total kinetic energy of the system is given by 

𝐾.𝐸.=  
1

2
𝑚 ∫ {[𝑦̇(𝑥, 𝑡)]2}𝑑𝑥

𝐿

0

 

(2) +
1

2
𝑚𝑐[𝑥̇𝑐

2 + (𝑦̇(𝑥𝑐, 𝑡) + 𝑦′(𝑥𝑐 , 𝑡) ⋅ 𝑥̇𝑐)
2]

+
1

2
𝑚𝑎[𝑥̇𝑐

2 + 𝑣̇2] 

where the over dot  denotes  the  derivative  with  respect  to  time  

𝑡 and  the prime  denotes  the  derivative  with  respect  to  the  

spatial  coordinate 𝑥. The total potential energy can be defined 

as 

𝜋 =
1

2
𝐸𝐼 ∫ {[𝑦′′(𝑥, 𝑡)]2}𝑑𝑥 +

1

2
 𝑘 [𝑦(𝑥𝑐 , 𝑡) − 𝑣]2

𝐿

0

 

(3) 
+

1

4
𝑘𝑛𝑙[𝑦(𝑥𝑐 , 𝑡) − 𝑣]4

+
1

2
𝑐[𝑦̇(𝑥𝑐 , 𝑡) + 𝑦′(𝑥𝑐 , 𝑡) ⋅ 𝑥̇𝑐 − 𝑣̇]2 

+
1

4
𝑐𝑛𝑙[𝑦̇(𝑥𝑐, 𝑡) + 𝑦′(𝑥𝑐 , 𝑡) ⋅ 𝑥̇𝑐 − 𝑣̇]4 

Finally, the work done by the axial force, i.e., the tension 𝑇 on 

the system can be expressed as 

𝑊 =
1

2
 ∫ 𝑇 𝑦′2𝑑𝑥

𝐿

0

 (4) 

Hence, the governing equations of motion for the system can be 

obtained by employing Hamilton’s principle, which states 

 𝛿 ∫ (𝜋 − 𝐾.𝐸.− 𝑊)𝑑𝑡 = 0.
𝑡2

𝑡1
 (5) 

Substituting Eqs. (2), (3) and (4) in the above equation to get the 

following governing equations of motion as 

𝐸𝐼𝑦′′′′ + 𝑚𝑦̈ − 𝑇𝑦 = 𝐹𝐿(𝑥, 𝑡) − {𝐹1 + 𝐹2} 𝐺(𝑥, 𝑡) (6) 

 

𝑚𝑎  𝑣̈ = 𝐹2 (7) 

where 𝐹1 and 𝐹2 are expressed as 

𝐹1 = 𝑚𝑐  (
𝜕2𝑦

𝜕𝑡2
+ 2

𝜕2𝑦

𝜕𝑥𝑟𝜕𝑡
⋅
𝑑𝑥𝑟

𝑑𝑡
+

𝜕2𝑦

𝜕𝑥𝑟
2
⋅ (

𝑑𝑥𝑟

𝑑𝑡
)

2

+
𝜕𝑦

𝜕𝑥𝑟

⋅
𝑑2𝑥𝑟

𝑑𝑡2
) 

(8a) 

𝐹2 = [𝑘[𝑦 − 𝑣] + 𝑏(𝑦 − 𝑣)3 + 𝑐(𝑦̇ + 𝑦′𝑥𝑐̇ − 𝑣̇)
+ 𝑐(𝑦̇ + 𝑦′𝑥𝑐̇ − 𝑣̇)3]|𝑥=𝑥𝑐

 

(8) 

and 𝐺(𝑥, 𝑡) in Eq. (6) is used to define the location profile of the 

absorber using the Dirac delta functions and the Heaviside step 

function. The four location profiles correspond to 

𝐺 = {

𝑔1,
𝑔2,
𝑔3,
𝑔4,

 𝑓𝑖𝑥𝑒𝑑 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑟
𝑜𝑛𝑒 − 𝑤𝑎𝑦 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑟
𝑡𝑤𝑜 − 𝑤𝑎𝑦 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑟

 𝑡𝑤𝑜 − 𝑤𝑎𝑦 𝑡𝑤𝑜 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑟𝑠

 

where 

𝑔1 = 𝛿(𝑥 − 0.02𝐿), (9a) 

𝑔2 = 𝛿(𝑥 − 𝑉𝑎𝑡)𝐻(0.1𝐿/𝑉𝑎 − 𝑡), (9b) 

𝑔3 = 𝛿(𝑥 − 𝑉𝑎𝑡)𝐻 (
0.1𝐿

𝑉𝑎
− 𝑡)

+ 𝛿(𝑥 − (0.2𝐿 − 𝑉𝑎𝑡))𝐻(𝑡

− 0.1𝐿/𝑉𝑎)𝐻(0.2𝐿/𝑉𝑎 − 𝑡), 

(9c) 

𝑔4 = 𝑔3 + 𝛿(𝑥 − (0.9𝐿 − 𝑉𝑎𝑡))𝐻(0.1𝐿/𝑉𝑎 − 𝑡)

+ 𝛿(1.1𝐿 − 𝑉𝑎𝑡)𝐻(𝑡
− 0.1𝐿/𝑉𝑎)𝐻(0.2𝐿/𝑉𝑎 − 𝑡). 

(9d) 

Following Skop and Balasubramanian [23], the fluctuating fluid 

force, 𝐹𝐿(𝑥, 𝑡) can be defined in terms of fluctuating lift 

coefficient 𝐶𝐿(𝑥, 𝑡) as 𝐹𝐿 =
𝜌𝑓𝑉𝑓

2𝐷𝐶𝐿

2
, where 𝐶𝐿 is governed by the 

following equation 

𝐶𝐿(𝑥, 𝑡) = 𝑞(𝑥, 𝑡) −
2𝛼

𝜔𝑠

𝑦̇. (10) 

In the above equation, 𝑞(𝑥, 𝑡) represents the wake variable, and 

is further governed through a following nonlinear van der Pol 

oscillator 

𝑞̈ − 𝜔𝑠𝐺(𝐶𝐿0
2 − 4𝑞2) 𝑞̇ + 𝜔𝑠

2𝑞 = 𝜔𝑠𝐹𝑦̇. (11) 

On combining the fluctuating force and van der Pol equations we 

get 

𝐹𝐿 =
𝜌𝑓𝑉𝑓

2𝐷

2
 (𝑞(𝑥, 𝑡) −

2𝛼

𝜔𝑠

𝑦̇) (12) 

3 Copyright © 2024 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2024/88438/V009T09A020/7403561/v009t09a020-detc2024-146367.pdf by Virginia Polytechnic Institute and State U

niversity, Joshua LEG
rande on 07 January 2025



 

Thus, the combined governing equations of motion with a 

nonlinear absorber and a van der Pol oscillator after neglecting 

the Coriolis effect can be written as 

𝐸𝐼𝑦′′′′ + 𝑚𝑦̈ − 𝑇𝑦′′ 

(13a) 

=
𝜌𝑓𝑉𝑓

2𝐷

2
 (𝑞 −

2𝛼

𝜔𝑠

𝑦̇) − {𝐹1 + 𝐹2} 𝐺(𝑥, 𝑡) 

𝑚𝑎  𝑣̈ = 𝐹2 (13b) 

𝑞̈ − 𝜔𝑠𝐺(𝐶𝐿0
2 − 4𝑞2) 𝑞̇ +  𝜔𝑠

2𝑞 = 𝜔𝑠𝐹𝑦̇ (13c) 

Using the eigenfunction expansion, we define 𝑦(𝑥, 𝑡) and  

𝑞(𝑥, 𝑡) as  

𝑦(𝑥, 𝑡)

= ∑𝜙𝑟(𝑥) ⋅ 𝐴𝑟(𝑡)

∞

𝑟=1

 
and 

𝑞(𝑥, 𝑡)

= ∑𝜙𝑟(𝑥) ⋅ 𝑞̃𝑟(𝑡)

∞

𝑟=1

 
(14) 

where 𝐴𝑟(𝑡), 𝑞̃𝑟(𝑡) are unknown functions of time and 𝜙𝑟(𝑥) are 

the normalized eigenfunctions. Note that the eigenfunctions of 

the bare beam with tension [4] can be obtained as 

𝜙𝑟(𝑥)

= √
2

𝑚𝑙
 𝑠𝑖𝑛 

[
 
 
 
 

(

 
 

√
−𝑇

2𝐸𝐼
+ √

𝑇2

4(𝐸𝐼)2
+

𝑚𝜔𝑟
2

𝐸𝐼

)

 
 

 𝑥

]
 
 
 
 

   
(15) 

where 𝜔𝑟  represents the natural frequencies of the bare beam and 

it is given by 

𝜔𝑟 = (
𝜋

𝐿
)

2

√
𝐸𝐼

𝑚
 (𝑟4 +

𝑟2 𝑇𝐿2

𝜋2𝐸𝐼
) (16) 

By substituting the assumed form of the solution into the 

governing equations (Eq. (13)) and performing Galerkin 

projection, we obtain following reduced order model as 

𝐴𝑝̈ + 2𝜁𝜔𝑝𝐴𝑝̇ + 𝜔𝑝
2𝐴𝑝 

+ [𝑚𝑐 (∑𝜙𝑖𝐴̈𝑖

∞

𝑖=1

) +  𝑘 (∑{𝜙𝑖𝐴𝑖}

∞

𝑖=1

− 𝑣) 

+𝑘𝑛𝑙 (∑{𝜙𝑖𝐴𝑖}

∞

𝑖=1

− 𝑣) (∑{𝜙𝑗𝐴𝑗}

∞

𝑗=1

− 𝑣)(∑{𝜙𝑘𝐴𝑘}

∞

𝑘=1

− 𝑣) 

+ 𝑐 (∑{𝜙𝑖𝐴𝑖
̇ }

∞

𝑖=1

− 𝑣̇) + 𝑐𝑛𝑙 (∑{𝜙𝑖𝐴𝑖
̇ }

∞

𝑖=1

− 𝑣̇{𝜙𝑖𝐴̇𝑖}) 

(∑{𝜙𝑗𝐴𝑗̇}

∞

𝑗=1

− 𝑣̇)(∑{𝜙𝑘𝐴𝑘̇}

∞

𝑘=1

− 𝑣̇)] |𝑥=𝑥𝑐
  

× ∫ 𝜙𝑝(𝑥)𝐺(𝑥, 𝑡)
𝐿

0

  =
𝜌𝑓𝑉𝑓

2𝐷

2𝑚
 (𝑞𝑝 −

2𝛼

𝜔𝑆

 𝐴𝑝) (17a) 

 

𝑚𝑎𝑣̈ =  [𝑘 (∑{𝜙𝑖𝐴𝑖}

∞

𝑖=1

− 𝑣) + 𝑘𝑛𝑙 (∑{𝜙𝑖𝐴𝑖}

∞

𝑖=1

− 𝑣) 

(∑{𝜙𝑗𝐴𝑗}

∞

𝑗=1

− 𝑣)(∑{𝜙𝑘𝐴𝑘}

∞

𝑘=1

− 𝑣)  

(17b) 

+𝑐 (∑{𝜙𝑖𝐴𝑖
̇ }

∞

𝑘=1

− 𝑣̇) 

+𝑐𝑛𝑙 (∑{𝜙𝑖𝐴𝑖
̇ }

∞

𝑖=1

− 𝑣̇)(∑{𝜙𝑗𝐴𝑗
̇ }

∞

𝑗=1

− 𝑣̇)(∑{𝜙𝑘𝐴𝑘
̇ }

∞

𝑘=1

− 𝑣̇)]  

 
 

𝑞̈𝑝 − 𝜔𝑆𝐺𝐶𝐿0
2  𝑞̇𝑝 − 4𝜔𝑠𝐺 (∑𝑞̇𝑝 ⋅ 𝑞𝑖

2

∞

𝑖=1

 ∫ 𝜙𝑝
2 ⋅ 𝜙𝑖

2 𝑑𝑥
𝐿

0

 

+2 ∑ 𝑞𝑝𝑞𝑖𝑞̇𝑖

∞

𝑖=1 𝑖≠𝑝 

 ∫ 𝜙𝑝
2 ⋅ 𝜙𝑖

2
𝐿

0

 𝑑𝑥) + 𝜔𝑠
2𝑞𝑝

= 𝜔𝑠𝐹𝐴̇𝑝 

(17c) 

We emphasize that the above set of ODEs include the dynamics 

for cable (𝐴𝑝), moving nonlinear absorber (𝑣) coupled with a 

van der Pol oscillator (𝑞𝑝). In the subsequent sections, the 

simulations are obtained numerically by using ten mode 

expansion for more accurate results. Given the semi-empirical 

nature of the wake oscillator, it is crucial to validate the accuracy 

of the proposed model and demonstrate the differences between 

the wake oscillator model and a sinusoidal force model. This is 

shown in the next section.  

 

3. Validation and Parameter Identification 
 
In this section, we validate the accuracy of the proposed 

model. It should be noted that the van der Pol oscillator is derived 

from empirical observations and embodies theoretical principles, 

making it inherently a semi-empirical model. Thus, the damping 

and coupling parameters in the wake oscillator need to be 

identified. For this purpose, we compare the response of the 

system with the lift force modeled as a wake oscillator against 

the system with a sinusoidal lift force as presented in [4].  

To achieve this, we establish the similarities between both 

models. Therefore, we substitute the stall term in Eq. (17a), 𝛼,  
as 0. This step ensures that the system's damping arises solely 

from structural damping and from the damping in the vibration 

absorber. Moreover, the excitation magnitude for sinusoidal 

forcing is amplified by the average of the steady-state response 
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of the wake variable 𝑞 across the given frequency range. With 

these values of the excitation amplitude and stall parameter, the 

time history at a given frequency used in [4] and the frequency 

response curve for the first mode of the cable is analyzed and 
shown in Fig. 3.  

 
(a) 

 
(b) 

FIGURE 3:  a) COMPARISONAND OF THE TIME 
RESPONSE OBTAINED BY TWO DIFFERENT FORCE 

MODELS AT 20𝐻𝑧  b) COMPARISON OF THE FREQUENCY 
RESPONSE OF THE CABLE WITH WAKE OSCILLATOR AND 

SINUSOIDAL FORCE CORRESPONDING AVERAGE VALUE 

 

The comparison of time response of the system at the 
midspan with average sinusoidal forcing and wake forcing is 

shown in Fig. 3a. From Fig. 3a, we observe that for the given 

values of the primary system parameters in [4] and the values of 

the van der Pol oscillator i.e., 𝐶𝑙0 = 0.28, 𝑐𝑑 = 1, 𝐹 = 1.2534 ×
10−2 and 𝐺 = 0.3763 [5], there is a good agreement between 

the sinusoidal lift-force model and the wake oscillator model. 

However, to elucidate the effect of the wake variable on the 

current system dynamics, we compare the corresponding 

frequency response curves for the first mode and is shown in Fig. 

3b. The results show that the van der Pol model is approximately 

equivalent to the one corresponding to the sinusoidal oscillator; 

however, the later one could not capture the effect of nonlinearity 

in the system dynamics. This observation can be realized through 
the damping term in Eq. (17c), which is velocity-dependent and 

quadratic in nature. Nonlinearity is crucial in our system as it 

allows for a more accurate representation of the current nonlinear 

system.  

Having established the differences and similarities 

between the current model and the sinusoidal forcing [4] to 

 

FIGURE 4:  TIME RESPONSE AT THE MID-SPAN OF THE 
CONDUCTOR FOR A FIXED LINEAR ABSORBER AND A 

FIXED NONLINEAR ABSORBER AT 𝑓 = 2.415 𝐻𝑧 

 

elucidate the effect of nonlinearity on the system, we present the 

effect of nonlinear absorbers in the wake-coupled system as 

compared to their linear counterpart as presented in [4] in the 
next section.  

4. Results and Discussion 
 

In this section, we explore the effectiveness of the moving 

nonlinear absorber on vibration mitigation by investigating the 

effect of different location profiles on the system dynamics.  

Figures (4-7) depict the comparison of the time response  of the 

system for the fixed absorber, the linear moving absorber, and 

the nonlinear moving absorber for different location profiles 

mentioned in Eq. (9). It should be noted that in all cases of 

different location profiles, the cable is excited at the primary 
resonance only. For the sake of comparison with the analysis 

presented in [4], we also place the fixed linear absorber at 2% of 

the conductor’s length.       

For the first case of location profile 𝑔1,  it can be observed 

from Fig. 4 that at resonance, the nonlinear absorber outperforms 

its linear counterpart at the same location and for the parameters 

listed in [4], i.e. 𝑘𝑛𝑙 = 1356.96 and 𝑐𝑛𝑙 = 177 𝑁. 𝑠. This can be 

attributed to the fact that at resonance, the amplitude of the 

system becomes maximum. causing the damping force from the 

nonlinear absorber to increase nonlinearly at resonance.  

The comparison of the response of the cable with the fixed linear 

absorber, a moving linear absorber, and a moving nonlinear 

absorber is depicted in Fig. 5 for the second location profile, 𝑔2. 

The moving absorber (linear and nonlinear) moves forward and 

stops after some time. As anticipated from [4], the moving 

absorber (green) shows an improvement over its fixed 

counterpart at resonance. The dynamic nature of the absorber 
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enables the absorber to sweep through more efficient locations 

along the length of the cable, which is unattainable by a fixed 

absorber. Furthermore, similar to the observation drawn from 

Fig. 4, a nonlinear moving absorber (purple curve in Fig. 5)  

 

 

FIGURE 5:  TIME RESPONSE AT THE MID-SPAN OF THE 
CONDUCTOR FOR A FIXED ABSORBER,  A ONE WAY 

MOVING LINEAR ABSORBER AND A ONE WAY MOVING 

NONLINEAR ABSORBER AT 𝑓 = 2.415 𝐻𝑧 

further decreases the response of the cable as compared to a 

moving linear absorber.  

The response of the forward-moving absorber can be 

significantly improved by implementing the third location 

profile 𝑔3 (i.e., the absorber moves back and forth), as shown in 

Fig. 6. The vibration amplitude at resonance is reduced to less 

than half of that observed with a fixed linear absorber, over a 

period twice as long as the time taken by the absorber to move 

forward. Moreover, the moving nonlinear absorber fully 

envelopes the two-way moving linear absorber. Note that the 

response of the system in either case does not diminish to zero 

due to the limit cycle oscillations from the nonlinear van der Pol 
oscillator. 

Finally, for a span length of 27.5𝑚, the results in Fig. 7 show a 

reduction of the vibration displacement when an additional 

nonlinear absorber is embedded at the other side of the cable 

corresponding to the location profile, 𝑔4. The displacement of 

the moving linear absorber is still envelopes the moving 

nonlinear absorber most of the time, but due to the nonlinearities 

in the absorber, the response of the two-way moving absorbers 

on both sides of the cable exhibits some fluctuations before 

reaching the limit cycle.  

The prior results show that at resonance and with an appropriate 

choice of parameters, a nonlinear moving absorber can 

significantly mitigate the vibration of the cable. With the 

availability of multiple parameters for the nonlinear moving 

absorber, such as the velocity, the nonlinear stiffness and 

damping as well as the effect of the van der Pol parameters, this 

becomes more of an optimization problem and is left for future 

work. The various parameters affecting the response of the 

system suggest that a parametric study and a performance 

assessment based on the efficiency of the absorber will enable us 

to further understand the potential improvement of the nonlinear 

moving absorber. 

 
FIGURE 6:  TIME RESPONSE AT THE MID-SPAN OF THE 

CONDUCTOR FOR A FIXED ABSORBER,  A TWO WAY 
MOVING LINEAR ABSORBER AND A TWO WAY MOVING 

NONLINEAR ABSORBER AT 𝑓 = 2.415 𝐻𝑧 

 

FIGURE 7:  TIME RESPONSE AT THE MID-SPAN OF THE 
CONDUCTOR FOR A FIXED ABSORBER,  TWO-WAY TWO 

MOVING LINEAR ABSORBERS AND TWO-WAY TWO 

MOVING NONLINEAR ABSORBERS AT 𝑓 = 2.415 𝐻𝑧 

5. CONCLUSIONS 

In this study, we investigated the effectiveness of moving 

nonlinear vibration absorbers for different configurations on 

Aeolian vibration mitigation of nonlinear overhead powerlines. 

The nonlinear absorber comprised of a mass-nonlinear spring- 

nonlinear damper-mass subsystem and moves along a certain 

region to cover a wider range of frequencies. Moreover, the 

impact of the nonlinear moving absorber was elucidated by 

incorporating a nonlinear wake oscillator. The governing 

equations of motion were obtained through Hamilton’s principle. 
The current model’s parameters were identified by showing 

good agreement with the sinusoidal lift-force model. The time 

response at the first mode revealed that a fixed nonlinear 

absorber outperforms in mitigating the vibration amplitude of the 

conductor as compared to its linear counterpart at the same 

location. The mitigation was further enhanced by allowing the 
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nonlinear absorber to move forward for different configurations. 

We observed that a two-way moving nonlinear absorber was able 

to keep the amplitude at a very safe level at resonance. By adding 

an extra absorber on the other side, the response was 

significantly reduced. In all configurations, the linear moving 
absorber’s response envelopes its nonlinear counterpart response 

and the nonlinear moving absorber showed better suppression of 

the amplitude at resonance. 
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