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ABSTRACT
This study focuses on laying the groundwork for the effective

vibration suppression of power lines using mobile damping robots
(MDR). Earlier research shows that effective vibration suppres-
sion is achieved by positioning the MDR at the anti-nodes of the
power line. This study focuses on accurately estimating the dy-
namic state of the power line using a data-driven approach, hence
identifying the position of the antinode. The entire dynamics of
the vibration of the system is estimated from the displacement data
of the power line using Dynamic Mode Decomposition (DMD)
and the resulting system is stabilized with Tikhonov Regulariza-
tion. The stabilized system is then used in conjunction with a
Kalman Filter to accurately estimate the dynamic state of the
power line using minimal displacement. All displacement data
used in this study is acquired from a Galerkin model of the power
line. This study shows that this method is a viable alternative
to existing numerical methods which are often computationally
expensive and time-consuming.
Keywords: Vibration Control, State-Estimation, Data-Driven
modeling, Kalman Filter

NOMENCLATURE
Powerline
𝑦 Transverse Displacement [𝑚]
𝑓0 Amplitude of forcing function [𝑁]
𝜔𝑒 Excitation Frequency [𝑟𝑎𝑑 𝑠−1]
𝛿 Dirac-delta function
Dynamic Mode Decomposition
𝑚 Order of the time series
𝑘 Time-step
A State Transition Matrix
𝜆 Eigenvalue
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𝑟 Number of modes
𝛼 Tikhonov Regularization Parameter

1. INTRODUCTION
Wind-induced vibrations (WIV) is one of the major causes

responsible for the failure of power-transmission lines. These
WIVs cause the repetitive cycles of bending stress in powerlines
and eventually resulting in failure, [1–4]. The failure of power-
lines not only causes discomfort in daily-life, but also responsible
for significant financial loss to power industry. Therefore, it is
necessary to develop an efficient method to suppress these un-
wanted WIVs of powerlines. This is the focus of the current
work.

One of the methods to suppress the WIVs is the use of Fixed
passive vibration absorbers (FPVAs) [5, 6]. However, FPVAs are
not efficient because of their fixed optimal location for a given
mode. Further, a FPVA might also contribute in the fatigue
failure of the powerline due to the added strain from the mass of
the FPVA, [7].

It has been well established that vibration absorbers are most
effective when they are positioned at the antinode of the vibration
loop, i.e., the point of highest amplitude of vibration [8]. There-
fore, to overcome the above-mentioned limitation of the FPVA, a
mobile absorber in the form of a mobile damping robot (MDR)
was proposed in [9, 10]. Since the MDR is capable of traversing
along the span of the power line, it can move to the point of anti-
node and hence, suppress WIVs effectively. We emphasize that
although there are other mobile robots that exist in the literature,
they are more focused on inspection, are expensive, and unsuit-
able for long-term mounting on the power line due to their heavy
mass. These shortcomings can be overcome by the proper design
of MDR.

As mentioned earlier, the effective vibration suppression of
the powerline is achieved by mounting the vibration absorber at
the anti-node. Hence, for optimum performance of MDR, in-
formation about the position of the antinode is required in real
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FIGURE 1: Conceptual design model of the mobile damping robot

FIGURE 2: Schematic of the power line with MDR

time. Though this can be achieved to some degree using nu-
merical methods, it is a computationally intensive and expensive
process. Also, the data related to anti-node cannot be accessible
to MDR in real time. Hence we resort to data-driven meth-
ods. Data-driven methods have gained popularity in recent years
owing to their ability to extract valuable insights and build low-
dimensional models from complex systems directly from data.
From data, these methods can capture the inherent characteristics
and behaviors of a system, even when the underlying physics is
not fully understood.

2. MATHEMATICAL MODELING
The schematic of the power line with MDR is shown in Fig

2. In the current work, the power line is modeled as an Euler-
Bernoulli beam, while the MDR is modeled as a spring-mass-
damper system [11]. The horizontal displacement is defined
as zero and self-damping is ignored as it is considered to have
negligible effects. The power line parameters are shown in Table
1.

Accordingly, the governing equation of motion for the cable

TABLE 1: Power Line Parameters

Parameter Value
Mass 𝑚 0.68 𝑘𝑔
Length 𝐿 3.66 𝑚
Tension 𝑇 395 𝑁
Diameter 𝑑 1.05 ×10−2 𝑚

Flexural Rigidity 𝐸𝐼 40.8 𝑚4

can be written as

𝐸𝐼𝑦′′′′ + 𝑚𝑦 + 𝑇𝑦′′ = 𝐹 (𝑥, 𝑡) − (𝐹1 + 𝐹2)𝐷 (𝑥) (1)

In the above equation 𝐹 (𝑥, 𝑡) is an excitation force at a single
point and can be expressed as

𝐹 (𝑡) = 𝑓0𝑠𝑖𝑛(𝜔𝑒𝑡) (2)

where 𝑓0 is the amplitude of the force, and 𝜔𝑒 is the excitation
frequency. Further, F1, F2 and D(x) are expressed as

𝐹1 = 𝑚𝑑𝑦 (3)

𝐹2 = 𝑘 (𝑦 − 𝑦𝑑) + 𝑐( �̇� − ̇𝑦𝑑) (4)

𝐷 (𝑥) = 𝛿(𝑥 − 𝑥𝑟 ) (5)

The governing equation of motion for the suspended mass is given
by

𝑚𝑑𝑦𝑑 − 𝐹2 = 0 . (6)

For this paper, the standalone powerline will be considered. A
numerical model is built and the data from this model will be
used for the paper. Two models will be considered, one where
the span is split into 20 elements while the other model has the
span split into 100 elements.

2.1 Data Driven Modeling
The method used in this paper is Dynamic Mode Decompo-

sition (DMD) [12–14]. It is a technique for modeling complex
dynamical systems using time-series data. DMD decomposes
the time-series data into a set of spatial modes and their tem-
poral frequencies and can capture the dynamics of the system.
The system under consideration is assumed to obey the following
discrete-time model.

𝑋𝑚
𝑘+1 = 𝐴𝑋𝑚

𝑘 (7)

, where

𝑋𝑘 =

⎡⎢⎢⎢⎢⎣
| | |
𝑥1 𝑥2 𝑥3 · · · 𝑥𝑚
| | |

⎤⎥⎥⎥⎥⎦ (8)

and

𝑋𝑘+1 =

⎡⎢⎢⎢⎢⎣
| | |
𝑥2 𝑥3 𝑥4 · · · 𝑥𝑚+1
| | |

⎤⎥⎥⎥⎥⎦ (9)

𝑋 is a collection of states of previous time steps as column
vectors and 𝑘 denotes time steps. 𝑚 is the order of the system
which is the number of column vectors in X (ie number of
previous time step data under consideration as shown in (8) and
(9).

The matrix 𝐴 is the operator that maps 𝑋𝑘 to 𝑋𝑘+1 which
essentially makes it a state-transition matrix like in state space
models. Since the state vectors are not invertible, we resort to
the Moore-Penrose pseudo-inverse. The Moore-Penrose pseudo-
inverse is a generalization of the matrix inverse for non-square
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FIGURE 3: State Transition Matrix

and singular matrices. Given a matrix 𝐴, its pseudo-inverse
denoted as 𝐴+ is unique and satisfies the following properties:

𝐴
(︁
𝐴+)︁ 𝐴 = 𝐴(︁

𝐴+)︁ 𝐴 (︁
𝐴+)︁ = 𝐴+(︁

𝐴
(︁
𝐴+)︁ )︁∗ = 𝐴 (︁

𝐴+)︁(︁ (︁
𝐴+)︁ 𝐴)︁∗ = (︁

𝐴+)︁ 𝐴
(10)

, where ∗ represents the conjugate transpose operation. When a
linear system 𝐴𝑥 − 𝑏, has no exact solution, the pseudo-inverse
can be used to find the least squares solution. The vector 𝑥 = 𝐴+𝑏
minimizes the Euclidean norm of the residual |𝐴𝑥 − 𝑏 |.

So, the state-transition matrix can be approximated as:

𝐴 ≈ 𝑋𝑘+1𝑋
+
𝑘 (11)

As seen in figure fig. 3, it is evident that 𝐴 is a good
approximation of the state-transition matrix.

2.2 Stability of the system
To analyze the stability of the system, the eigenvalues of 𝐴

are studied. The eigenvalues denoted as 𝜆𝑖 give insight into the
temporal behavior and stability of the system. In a discrete-time
system, the system is stable if all the eigenvalues fall within the
unit circle in the complex plane i.e.:

|𝜆𝑖 | < 1∀𝑖 ∈ 1, 2, . . . , 𝑟 (12)

where 𝑟 is the number of modes. If any eigenvalue has a
magnitude greater than or equal to 1, the corresponding mode
will grow exponentially over time, indicating unstable behavior.
Eigenvalues with magnitudes of less than 1 correspond to stable
modes that decay over time.

In fig. 4, the maximum values of the imaginary and real parts
are 114.98 and 663.46. Out of 101 eigenvalues, 11 are outside
the unit circle and these eigenvalues correspond to modes that
will grow exponentially. This means that our system behavior

FIGURE 4: System Afer DMD

will also grow exponentially and hence it is unstable. So, the
system has to be stabilized while making sure that 𝐴 is still a
good approximation of the state-transition matrix.

2.3 Tikhonov Regularization
Tikhonov Regularization modifies the problem by adding

a regularization term to the objective function, [15, 16]. The
regularized objective function then becomes:

min
𝐴

|𝑋𝑘+1 − 𝐴𝑋𝑘 |2𝐹 + 𝛼 |𝐴|2𝐹 (13)

where 𝛼 > 0 is the regularization parameter, | · |𝐹 denotes the
Frobenius norm. The regularization term 𝛼 |𝐴|2

𝐹
penalizes large

values in the matrix 𝐴, promoting stability. Then the regularized
state-transition matrix, 𝐴𝑟𝑒𝑔 can be calculated as:

𝐴𝑟𝑒𝑔 = 𝑋𝑘+1𝑋
𝑇
𝑘 (𝑋𝑘𝑋

𝑇
𝑘 + 𝛼𝐼)−1 (14)

where 𝐼 is the identity matrix.

In fig. 5, the maximum values of the imaginary and real
parts are 0.1212 and 0.9868 respectively. All the eigenvalues lie
within the unit circle and hence the system is stable. As seen in
fig. 6, 𝐴𝑟𝑒𝑔 is still a good approximation of the state-transition
matrix. The choice of the regularization parameter, 𝜆 is crucial
for achieving the perfect balance in 𝐴𝑟𝑒𝑔. A larger value of 𝜆 will
push the eigenvalues to the origin thus improving stability, but
if 𝜆 is too large the resulting 𝐴𝑟𝑒𝑔 may not be able to accurately
capture the dynamics of the system.

2.4 Kalman Filter
The Kalman Filter operates on the principle of prediction

and correction and follows a two-step process that first predicts
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FIGURE 5: System after DMD and Regularization (α = 0.1)

FIGURE 6: State Transition Matrix after Regularization

the system’s future states and then corrects the prediction based
on new measurement data, [17]. This allows the filter to estimate
the states in real time and it can also predict all the states of
the system even when the system is only partially observable.
This paper implements a tailored Kalman Filter to work with the
data-driven workflow. The filter works as follows:

Prediction:

�̂�𝑘 |𝑘−1 = 𝐴�̂�𝑘−1 |𝑘−1 +𝑄 (15)
𝑃𝑘 |𝑘−1 = 𝐴𝑃𝑘−1 |𝑘−1𝐴

𝑇 +𝑄 + 𝜀𝐼 (16)

where �̂� is the state vector
𝑞 is the process noise
𝑃 is the covariance matrix

Update:

𝑦𝑘 = 𝑧𝑘 − 𝐻𝑘 �̂�𝑘 |𝑘−1 (17)
𝑆𝑘 = 𝐻𝑘 |𝑘−1𝐻

𝑇 + 𝑅 + 𝜀𝐼 (18)

𝐾𝑘 = 𝑃𝑘 |𝑘−1𝐻
𝑇𝑆−1

𝑘 �̂�𝑘 |𝑘 = �̂�𝑘 |𝑘−1 + 𝐾𝑘𝑦𝑘 (19)
𝑃𝑘 |𝑘 = (𝐼 − 𝐾𝑘𝐻) 𝑃𝑘 |𝑘−1 (20)

where:
𝑧 is the new measurement data
𝑦 is the measurement residual
𝑆 is the innovation covariance
𝐾 is the Kalman Gain
𝑅 is the measurement noise
𝜀 is the regularization term

The regularization term 𝜀 is a small value and ensures the
numerical stability of the Kalman Filter, [18]. Adding a small
value to the innovation covariance will prevent it from approach-
ing singularity. Also, this implementation of the Kalman Filter
assumes that only the first few states in the system are observable.

3. RESULTS AND DISCUSSION
This section discusses the results and performance of the

Kalman Filter.

3.1 20 Element Model

FIGURE 7: Performance of KF on 20 Element Model: ε = 1

Total number of states: 21
Number of observable states: 10

Fig. 7 shows the performance of the Kalman Filter on the
20-element model. The filter can accurately track all 21 states in
the system using the measurements from the first 10 states.
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FIGURE 8: Performance of KF on 100 Element Model: ε = 1

3.2 100 Element Model
Total number of states: 101

Number of observable states: 13

Fig. 8 shows the performance of the Kalman Filter on the
100-element model. The filter can accurately track all 101 states
in the system using the measurements from the first 13 states.

4. CONCLUSION AND FUTURE WORK
This paper demonstrated that the use of DMD to model the

dynamics combined with Tikhonov Regularization to stabilize
the system and a Kalman Filter for state estimation is a viable
alternative to numerical methods. The estimations from the filter
agree with the numerical simulation. This method will also
be able to adapt to changes in the dynamics of the system(i.e.
the powerline) since the dynamics is captured using data from
the system. Another interesting find is that even though the
number of states increased from 21 to 101 between the two models
under consideration, the number of observable states required for
accurate state estimation has not changed much.

Further research is needed into better methods of updating
the state transition matrix over time. The time delay with which
the filter can accurately estimate states during sudden changes
in dynamics is also to be studied. Also, in this paper, the first
few states are considered to be observable, and more research
is required to find the optimal distribution of observable states
along the span of the powerline.
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